Real time and Quantitative (RTAQ) PCR

or.... for this audience...

"so I have an outlier and I want to see if it really is changed"

Nigel Walker, Ph.D.

Laboratory of Computational Biology and Risk Analysis, Environmental Toxicology Program, NIEHS

I've got 30 minutes- what am I going to say?

- What I am going to tell you
 - No Overview of the technology
 - No Overview of Software based quantitation
 - Assay Designs
 - **▼** Types of Quantitative analysis
- What I am not going to tell you
 - Now to design primers
 - Now to use different types of PCR machines
 - ► All there is to know- this is just a brief intro

Conventional RT-PCR

- Reverse transcription (RT) of cDNA from RNA
 - No Oligo d(T)
 - Random Hexamer
 - **№** Gene specific primer
- PCR amplification of a defined DNA sequence from cDNA
 - ► Traditionally a 3-phase multi-cycle reaction
 - **►** Denaturation, annealing, primer extension
- Electrophoretic separation of PCR products (amplicons)
 - R PCR for specific number of cycles
 - Run products on an agarose gel

Real-time PCR is kinetic

- Detection of "amplification-associated fluorescence" at each cycle during PCR
- No gel-based analysis at the end of the PCR reaction
- Computer based analysis of the cycle-fluorescence time course

PCR cycle

Specialized Instrumentation is needed

- 96-well format
 - **▶** ABI SDS 7700
 - **▼** ABI 7000
 - **▼** ABI 5700
 - **™** BioRad Icycler
 - Stratagene Mx4000
- Capillary tube format-
 - Roche Light cycler

- 384-well format HT systems
 - **№** ABI SDS 7900

Software-based analysis

- Data acquisition
 - Fluorescence in each well at all cycles.
 - ► Software-based curve fit of fluorescence vs cycle #
- Threshold
 - ► Fluorescence level that is significantly greater than the baseline.
 - ► Automatically determined/User controlled
- C_T (Cycle threshold)
 - Cycle at which fluorescence for a given sample reaches the threshold.
 - $ightharpoonup C_T$ correlates, inversely, with the starting concentration of the target.
 - ► Varies with threshold- not transferable across different plates

Software-based analysis

Log plot

Example analysis of CYP1A1

Linear range for CYP1A1 by RTAQ-PCR

1pg-100ng Total RNA

• C_T correlates, inversely, with the starting concentration of the target.

Amplification-associated fluorescence

- Fluorescent dye
 - ► Detects accumulation of DNA (SYBR green)
- FRET (Fluorescent Resonance Energy Transfer) based.
 - ► Detect accumulation of a fluorescent molecule (Taqman)
 - ► Detect accumulation of specific DNA product-(Molecular Beacons, LC)

Methods of fluorescence detection

Dye-based

- Upside
 - **▼** Quick
 - No primer/probe optimization
- Downside
 - Non-specific
- Application
 - Many genes few samples
 - "That sounds like just the ticket for checking my microarray data"

FRET-based

- Upside
 - **▼** Specific
- Downside
 - **▶** Primer/probe optimization
 - **№** More costly
- Application
 - Many samples few genes

Primer sets

- There are no large databases of primer sets
 - We attempted to get a database going early on with little success.
- Commercial pre-developed assays are available
- Dye-based
 - Existing primers could be adapted but may not be the best
- Probe-based
 - ► Unlikely that existing PCR primer pairs will be suitable
 - ▶ Primers and probes designed to match specific reaction conditions.
- Primer design
 - ► Primer ExpressTM software facilitates design (for ABI system) (SCL copies)
 - No optimization of primer annealing temperature
 - Multiple primer sets can use <u>same</u> default cycling conditions on SDS7700

Quantitation

- Absolute quantitation (eg. copies/ug RNA)
 - Interpolate C_T vs standard curve of known copies of nucleic acid
 - Total RNA, in vitro transcribed RNA, DNA
- Unit-less quantitation (arbitrary values/ug RNA)
 - No Interpolate C_T vs dilution curve of a "quantitator standard RNA"

Relative quantitation

- \bullet ΔC_T between "control" and "treated" RNAs on a single plate
 - **▼** Fold-difference
 - Cannot compare Ct between samples on different plates
- ΔC_T between "calibrator" RNA sample and unknown RNA
 - Same calibrator RNA can be on multiple plates
- $\Delta\Delta C_T$ between "control" and "treated"
 - ► Fold change-normalized to a separate reference gene/sample

Relative fold change

- C_T inversely correlated with starting copies
- Each cycle there is a "doubling" of amplicons (assuming 100% efficiency)
- Difference in 1 cycle therefore a 2=fold difference in copies

Fold change = $2^{\Delta CT}$

 $\Delta Ct = 3.31$

Fold difference in starting copy number = $2^{3.31} = 9.9$

Correlation of real-time and microarray

Efficiency adjustment

For a ΔC_t =1, Fold change = efficiency

- $2^{\Delta \text{ CT}}$ assumes a 100% efficient amplification
- For single gene efficiency adjustment use
 - ightharpoonup Fold change = e $^{\Delta Ct}$
 - Where efficiency(e%) = $10^{(-1/\text{slope})}$
- For a Δ Ct=1, Fold change = efficiency

Calculation of Efficiency

- Based on a linear plot of C_T vs. log copies:
- Efficiency(e%) = 10 (-1/slope)
- 100% efficiency (2 copies each cycle) slope of -3.3219.

Slope =
$$-3.462$$

$$e = 10$$
 (-1/3.462) = 1.95

1.95 copies per cycle

$$\Delta Ct = 3.3$$

Fold=
$$(1.95)^{3.31} = 9.1$$
 fold

Efficiency adjusted Normalization

$$\text{ratio} = \frac{\left(E_{\text{target}}\right)^{\Delta \text{CP}_{\text{target}}\left(control - sample\right)}}{\left(E_{\text{ref}}\right)^{\Delta \text{CP}_{\text{ref}}\left(control - sample\right)}}$$

- Fold-change can be "normalized" relative to a "reference gene"
- Reference can be a separate sample on the plate
- Beware of the interpretation of a normalized fold change
 - Assumption that the reference gene is "unaffected" by treatment

Can I really detect <2X changes?

- How can you be sure a difference is real?
 - ightharpoonup T-test on triplicates C_T s
- Sensitivity of discrimination is dependent upon...
 - **Efficiency**
 - Assay variability
 - Number of Replicates

Variability impact on ΔCt

- Taqman or SYBR
- Standard deviations (n = 9)
 - **№** 0.2-0.5 cycles
 - \triangleright CV, 1-2% on C_T values
- Power calculation for $\Delta Ct = 1, 90\%, p < 0.05$ (T-test)
 - sd=0.25, n=3
 - $rac{8}{1}$ sd =0.33, n = 4
 - ightharpoonup sd = 0.5. n = 7

Issues of assay design

- RNA specific sets -ie Primers spanning intron location
 - ► If you know the gene and have the time go for it.
 - Not all genes in database and annotated esp. rat
- Do you need RNA specific sets?
 - RNA expression 10³-10⁸ copies/100ng total RNA
 - 100 ng RNA approx = 100 single gene copies (assuming 1% DNA contam)
- Reverse transcription
 - **▼** Gene specific primer is best especially if using a synthetic RNA standard
 - No Oligo d(T)-may not be good for 5' end targets
 - Random hexamers poor for synthetic RNA standard

Some Take-home advice

- You're not in Kansas anymore, so do your homework first
 - ► Learn the concepts before you do the assay
- Specialized machines
 - Make contact with someone who will let you use their machine
- The devil is in the details.
 - You can get the same CT from very different curves of different quality
- You still need gels
 - While quantitation is gel-free, a picture tells a thousand words
- Replicate
 - You can detect a 2X change with duplicates but is it for real?

Acknowledgements/Information sources

- Chris Miller- now the ABI Field Application Specialist!
- NIEHS Real-time PCR webpage
 - http://dir.niehs.nih.gov/pcr
- Applied Biosystems
 - http://www.appliedbiosystems.com/apps
- BioRad ICycler
 - http://www.bio-rad.com/iCycler/
- Stratagene
 - http://www.stratagene.com/q_pcr/index.htm
- Light Cycler
 - http://biochem.roche.com/lightcycler/lc_sys/lc_sys.htm

Additional Reference

Michael W. Pfaffl. A new mathematical model for relative quantification in real-time RT-PCR. *Nucleic Acids Research* **29**(9): 2005-2007, 2001.